The value of the spineless monkey orange tree (Strychnos madagascariensis) for conservation of northern sportive lemur species (Lepilemur milanoi and L. ankaranensis)

Jordi Saliona¹, Matthew Banks¹, Tantely Nirina Ralantoharjona², Emmanuel Rasolondraibe³, Radavison Zaranaini², Ando Rakotonahary⁴, Sébastien Wohlhauser², Brent J. Sewall⁵, Lounès Chikh², V.V

Correspondence:
Jordi Saliona
Instituto Gulbenkian de Ciência, Oeiras, Portugal
E-mail: jordi.saliona@gmail.com

ABSTRACT
Tree hollows provide shelters for a large number of forest-dependent vertebrate species worldwide. In Madagascar, where high historical and ongoing rates of deforestation and forest degradation are responsible for a major environmental crisis, reduced availability of tree hollows may lead to declines in hollow-dwelling species such as sportive lemurs, one of the most species-rich groups of lemurs. The identification of native tree species used by hollow-dwelling lemurs may facilitate targeted management interventions to maintain or improve habitat quality for these lemurs. During an extensive survey of sportive lemurs in northern Madagascar, we identified one tree species, Strychnos madagascariensis (Loganiaceae), the spineless monkey orange tree, as a principal sleeping site of two species of northern sportive lemurs, Lepilemur ankaranensis and L. milanoi (Lepilemuridae). This tree species represented 32.5% (n=150) of the 458 sleeping sites recorded. This result suggests that S. madagascariensis may be valuable for the conservation of hollow-dwelling lemurs.

RÉSUMÉ
De nombreux vertébrés forestiers à travers le monde trouvent refuge dans des cavités et des trous d’arbres. A Madagascar, les taux de déforestation historiques et actuels sont responsables d’une crise environnementale majeure. Dans ce contexte, une disponibilité réduite d’arbres pourvus de cavités pourrait entrainer le déclin des espèces dépendant de ces abris comme par exemple les lémuriens, un des groupes de lémuriens les plus riches en espèces. L’identification des espèces d’arbres indigènes creusés de trous et utilisés par les lémuriens pourrait faciliter la mise en place d’actions de conservation ayant pour but de maintenir ou améliorer l’habitat de ces lémuriens. Au cours d’une étude réalisée dans le Nord de Madagascar, nous avons observé que Strychnos madagascariensis (Loganiaceae) était fréquemment utilisé comme site dortoir par les deux espèces de lémuriens présentes, Lepilemur ankaranensis et L. milanoi (Lepilemuridae). Cette espèce d’arbre concernait 32.5% (n = 150) des 458 sites dortoirs enregistrés. Ce résultat suggère que S. madagascariensis pourrait être important pour la conservation des lémuriens dépendant de sites dortoirs.

INTRODUCTION
The identification of important interspecific interactions can be of significant value for conservation management (Caro 2007, Berger-Tal et al. 2011). For instance, knowing the major plant species on which an endangered species relies for feeding, resting or dwelling can be of particular importance when establishing conservation, reforestation and/or timber and forest use plans (Rose et al. 2001, Lindenmayer et al. 2006). Sleeping sites are crucial for the survival of terrestrial vertebrates (Anderson 1998), and in particular burrows, nests, tree hollows, and other structures provide protection from climatic extremes (e.g., Cheirogaleus sp., Daumann et al. 2004) and predators (e.g., Allococcus trichotis, Bebou et al. 2009). Tree hollows are a critical structural attribute of native forests worldwide and a large number of vertebrate species (e.g., Cheirogaleidae family of primates, nocturnal birds of the Strigidae family, etc.) are closely associated with these hollows (Newton 1994, Gibbons and Lindenmayer 2002).

Primates spend about half of their life at sleeping sites, and their use has been suggested to be important for understanding the diversity of primates’ adaptations to their environment (Anderson 1998). In Madagascar two families of lemurs (Cheirogaleidae and Lepilemuridae) are known to extensively use tree hollows (Mittermeier et al. 2010).
Madagascar Conservation & Development is the journal of Indian Ocean e-ink. It is produced under the responsibility of this institution. The views expressed in contributions to MCD are solely those of the authors and not those of the journal editors or the publisher.

All the issues and articles are freely available at http://www.journalmcd.com

Contact Journal MCD
info@journalmcd.net for general inquiries regarding MCD
funding@journalmcd.net to support the journal

Madagascar Conservation & Development
Institute and Museum of Anthropology
University of Zurich
Winterthurerstrasse 190
CH-8057 Zurich
Switzerland

Indian Ocean e-ink
Promoting African Publishing and Education
www.ioeink.com

Missouri Botanical Garden (MBG)
Madagascar Research and Conservation Program
BP 3391
Antananarivo, 101, Madagascar
Leptulemur milanjoi and L. ankaranensis are two sportive lemur species of the family Leptulemuridae with neighboring and partly overlapping distributions in northern Madagascar (Figure 1, Louis et al. 2006). They can be very abundant in some forests (e.g., in Ankarana and Solanianiplana, Hawkins et al. 1990, Salomana et al. 2014a), yet, little is known about the biology of these nocturnal species. Apart from several estimates of their population densities and population sizes (Meyers and Ratsiason 1989, Hawkins et al. 1990, Meyler et al. 2012, Salomana et al. 2014a), their ecology and behavior remain understudied. In particular, while it is known that these species use tree sleeping sites during the day (Mittemeer et al. 2010), no specific study has yet been published that identifies the tree species used as sleeping sites in these regions. However, a large body of literature covers the biology and behavioral ecology of several other sportive lemur species. Schmid and Ganzhorn (1996) studied for instance *L. ruficaudatus* and showed that they have the lowest basal metabolic rate of all folivorous mammals, which may allow them to subsist on leaves with a high toxic allelochemicals but low energy and protein content. This further suggests that sleeping sites may provide sportive lemur shelters to limit energy expenses and maintain low diurnal basal metabolism in adverse climatic conditions. Indeed, the presence of Sahamalaza sportive lemur (L. sahamalazaensis) in tree hollows was negatively correlated to rainfall, and tree hollows were reported as not occupied at all in the rainy season (Seiler 2012). This stresses the function of potential tree hollows as a kind of 'dry season residence' in dry regions of Madagascar. Moreover, it also may serve as shelter from aerial and terrestrial predators (Fichtel 2007, Seiler et al. 2013). Several studies reported the use of a diversity of sleeping sites per individual and the shared use of sleeping sites by partners or relatives (Rasoloharjaona et al. 2003, Zinner et al. 2003) in some species and solitary in use in others (Rasoloharjaona et al. 2008, Seiler et al. 2013). The spatial partition of individuals has been repeatedly linked to sleeping site availability for several species (Rasoloharjaona et al. 2008, 2006, Zinner et al. 2003, Rasoloharjaona et al. 2008) and is considered to be an important factor of the overlap in home ranges of non-mated, unrelated individuals. Rasoloharjaona et al. (2010) suggested that sleeping sites may be limited and defendable resources providing reproductive benefits, and among the main drivers of ritualized aggressive loud call displays and tree gouging behavior used for territory and resource defense.

Forest quality and maturity may affect tree hollow availability as old mature forests are more likely to harbor old and hollowed trees (Gibbons and Lindermayer 2002). The presence and density of sportive lemur populations may thus depend on the existence of old forests providing suitable food, substrates for locomotion, and sleeping sites (Rasoloharjaona et al. 2008, Seiler et al. 2013).

During an extensive survey whose primary goal was to assess population densities and carry out genetic sampling of sportive lemurs in northern Madagascar, we also noticed the prevalence of the use of one tree species as a sleeping site. As a first step toward describing the roosting ecology of the northern sportive lemurs *L. milanjoi* and *L. ankaranensis*, we report in this paper the prevalence of the use of this species, the spinelocks monkey orange tree *Strychnos madagascarensis* (Loganiaceae) for sleeping sites by these two lemur species. Our aim was not to provide a detailed analysis of sleeping sites or tree species but rather draw attention to one particularly striking species.

MATERIAL AND METHODS

STUDY REGION. We visited all 17 major forests within the known distribution of the two *Leptulemur* species (Figure 1) during the dry seasons (April–November) of 2011, 2012, and 2013. Specifically, we visited the Loky-Manambato region (Daraina) and the Andrafiamena-Andavakoera massif, both Category V protected areas managed by the NGO Fanamby, as well as the Ankarana National Park and the Analamerana Special Reserve, both managed by Madagascar National Parks (Figure 1). These study sites have been previously described in detail by several authors (Hawkins et al. 1990, Goodman and Wilmé 2006a, Rannison 2006, Burivalova 2011). Briefly, these are mainly fragmented dry forests, frequently surrounded and/or connected by riparian corridors or smaller fragments. Yet, some forests in the south of the Loky-Manambato region (Binara, Antsahabe, Bobankitota) as well as some valleys of Andrafiamena, and some corridors of the Ankarana Plateau harbor sub-humid forests (Moot and Smith 2007). While most forests of the Loky-Manambato region lie on distinct granitic-migmatic blocks separated by alluvium, Ankarana is a typical tsingy limestone plateau, dissected by basalt corridors, that extends in the east to the limestone blocks in the northern part of Analamerana and Andrafiamena. The southern part of Andrafiamena forest lies above sandstone soil and Andavokoera basement rocks (igneous and metamorphic, Goodman and Wilmé 2006b).

FIELD PROCEDURES. During diurnal surveys we actively and opportunistically (during other research activities) searched for sportive lemurs. From most of the 36 camp sites, surveys spread, when allowed by the topography, in a star-like manner, and included transects, existing trails, and areas off trail. Additional maps of all surveyed sites and recorded Global Positioning System (GPS) coordinates and other description of the field are available in Salomana (2014), and in Salomana et al. (2013, 2014a,b). When a sportive lemur was spotted we recorded the geographical position of its sleep site using a Garmin® Etrex-H GPS receiver (maximum error: ±5m) and the WS584 referencing system. The vernacular names of tree species and scientific names when known) were recorded for all sleeping sites or trained botanical guides experienced in the regional inventory of native plants. In particular, *Strychnos madagascarensis* was identified on the basis of distinctive characteristics of its leaves and fruits (Schatz 2001). Vernacular names sometimes varied from site to site. For instance *S. madagascarensis* was called synonymously as vakaka, vakakoagna, vakakana, vahipendola, other vernacular names for single species may have varied similarly.

Our experience was that the two sportive lemur species (*Leptulemur milanjoi* and *L. ankaranensis*) are not distinguishable morphometrically. Attribution of these lemurs and their sleeping sites to either sportive lemur species is therefore based on the schematic approximate distribution range (Figure 1) as defined by Louis et al.’s (2006) taxonomy. According to these authors, however, the two species occur in sympathy in the Andrafiamena forest (Figure 1). Our observations of *Leptulemur* in the Andrafiamena forest hence cannot in theory be attributed without error to either of the two species. To avoid confusion, therefore, we exclude Andrafiamena observations from species-level results, but included it in overall results. Further taxonomic work might help to clarify the exact distribution of these species. For each species and forest we calculated the percentages of sleeping sites in *S. madagascarensis* relative to the total number of sleeping sites. We
further compared the proportion of *S. madagascariensis* and other tree taxa used by each sportive lemur species using a Chi-squared test.

STRYCHNOS MADAGASCARIENSIS DISTRIBUTION IN MADAGASCAR. To foster potential interest from other researchers and forest conservation managers within a broader geographic context, we also clarified the distribution of *S. madagascariensis* in Madagascar on the basis of existing collections of this tree species. We used the Tropicos® specimen online data base http://www.tropicos.org/, which lists 179 specimens in Madagascar from several institutions. The map of the distribution (Figure 1) was produced using the online SimpleMappr mapping tool (Shorthouse 2010).

RESULTS

Out of 438 sleeping sites, four records (0.6%) were vegetative tangles; the rest were in tree hollows. *Strychnos madagascariensis* represented 150 observations (32.5% of the total, Table 1). There was no difference in the frequency of use of *S. madagascariensis* by the two species of sportive lemurs *Leptilmur milanoi* 37.4%, 104 out of 278 observations; *L. ankaranensis*: 35.5%, 43 out of 121 observations, Table 1, Chi-squared test *p*-value = 0.9). *S. madagascariensis* was by far the tree species most used by sportive lemurs, with about seven times more records than the second most frequently used category of trees. For *L. milanoi*, mampay trees (corresponding to several genera from the Fabaceae family Schatz 2001; 13 observations) were the second-most used species of tree. For *L. ankaranensis*, hazaotambo trees (probably *Sarcolea* spp., 21 observations) were the second-most used species of tree. Table 1 and Figure 1 show that the proportion of *Strychnos madagascariensis* is not evenly distributed within and between forests. If we discard sites with very few (≤3) observations, the proportion of *S. madagascariensis* sleeping sites ranges from 12.5% in the wet mountainous forest of Binara to 68.2% in the dry forest of Solamplaina for *Leptilmur milanoi* and from 5.1% in Andrafiamena to 45.9% in Analamerana Special Reserve for *L. ankaranensis*. The geographical distribution of observations (Figure 1) shows that the western lowland edge of the Ankaran plateau, covered with very dry forest, the Solamplaina and Ambohitondoina dry forest and the forest of the Analamerana Special Reserve, harbor high proportions of observations of *S. madagascariensis* sleeping sites.

There are a few local exceptions to this regional pattern. The Andrafiamena forest had the lowest frequency of *Strychnos madagascariensis* sleeping sites for *Leptilmur ankaranensis* or *L. milanoi*, rather, most sleeping sites were in hazaotambo trees (*Sarcolea* sp., 20 out of 21 observations). Since in this area, *Sarcolea* sp. seems to dominate parts of the landscape, it is possible that *Strychnos madagascariensis* is present at low density, in the core of Antsahabe and Binara forests, where the use of *S. madagascariensis* sleeping sites was low for *L. milanoi*, tree hollows.

![Figure 1. Studied sportive lemur sleeping sites. (Purple numbers correspond to locality numbers [50] mentioned in Table 1. The schematic approximate distribution ranges are based on Louis Jr. et al. 2006 taxonomy. Tansell (2007) suggested that the *Leptilmur* species reported by Louis Jr. et al. (2006), all diagnosed exclusively on generic distance, should be treated with caution. Inset map showing the distribution of *Strychnos madagascariensis* specimens' origin within Madagascar (western areas tend to be the drier areas of Madagascar; eastern areas tend to be wetter; the northern tip of Madagascar tends to be dry or transitional. Modified from: Catalogue of the Vascular Plants of Madagascar. Tropicos.org. Missouri Botanical Garden. 14 May 2015.](image)
Table 1. Number and proportion of *Strychnos madagascariensis* sleeping sites per surveyed forest fragment. *ld* — forest identification numbers as purple numbers in Figure 1; *S. mad* — *Strychnos madagascariensis* occurrences; % — percentage of *S. madagascariensis* occurrences out of all sleeping site records; *Forest type* — D — Dry; T — Transitional; H — Humid; D/T — site that includes both forest types; *Protected Area* — L.M. — Loky Manambato managed by Fanany in the SAVA Region, ASR — Analamanga Special Reserve, and ANP — Ankaranaka National Park, both managed by Madagascar National Park in the DIANA Region, A.P., Andrafiamena-Andavao managed by Fanany in the DIANA Region. Attribution to either sportive lemur species (*L. milanolii* and *L. ankaranae*) is based on the schematic approximate distribution range (Figure 1) as defined by taxonomy by Louis et al. (2004), with Andrafiamena records assigned to *L. ankaranae* or *L. milanolii*.

<table>
<thead>
<tr>
<th>Species</th>
<th>Forest</th>
<th>Id</th>
<th>S. mad</th>
<th>All trees</th>
<th>%</th>
<th>Forest type</th>
<th>Protected area</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. milanolii</td>
<td>Ambilondrombo</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>33</td>
<td>D</td>
<td>L-M</td>
</tr>
<tr>
<td>L. milanolii</td>
<td>Ambolontokondra</td>
<td>2</td>
<td>23</td>
<td>39</td>
<td>59</td>
<td>D</td>
<td>L-M</td>
</tr>
<tr>
<td>L. milanolii</td>
<td>Anpondrabe</td>
<td>3</td>
<td>12</td>
<td>45</td>
<td>28</td>
<td>D/T</td>
<td>L-M</td>
</tr>
<tr>
<td>L. milanolii</td>
<td>Ankarambe</td>
<td>4</td>
<td>1</td>
<td>100</td>
<td>100</td>
<td>D/T</td>
<td>L-M</td>
</tr>
<tr>
<td>L. milanolii</td>
<td>Antsahabe</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>D/T</td>
<td>TAH</td>
</tr>
<tr>
<td>L. milanolii</td>
<td>Antsahanjary</td>
<td>6</td>
<td>14</td>
<td>45</td>
<td>31</td>
<td>D</td>
<td>L-M</td>
</tr>
<tr>
<td>L. milanolii</td>
<td>Belaraka</td>
<td>7</td>
<td>2</td>
<td>25</td>
<td>80</td>
<td>D/T</td>
<td>L-M</td>
</tr>
<tr>
<td>L. milanolii</td>
<td>Besanony</td>
<td>8</td>
<td>2</td>
<td>28</td>
<td>25</td>
<td>D/T</td>
<td>L-M</td>
</tr>
<tr>
<td>L. milanolii</td>
<td>Biniana</td>
<td>9</td>
<td>0</td>
<td>12.5</td>
<td>12.5</td>
<td>TAH</td>
<td>L-M</td>
</tr>
<tr>
<td>L. milanolii</td>
<td>Bevanjaka</td>
<td>10</td>
<td>18</td>
<td>57</td>
<td>31</td>
<td>TAH</td>
<td>L-M</td>
</tr>
<tr>
<td>L. milanolii</td>
<td>Solampanimala</td>
<td>11</td>
<td>30</td>
<td>44</td>
<td>68</td>
<td>D</td>
<td>L-M</td>
</tr>
<tr>
<td>Sub total L. milanolii</td>
<td></td>
<td></td>
<td>104</td>
<td>278</td>
<td>37.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. ankaranae</td>
<td>Analamana</td>
<td>12</td>
<td>28</td>
<td>61</td>
<td>45.9</td>
<td>D/T</td>
<td>ASR</td>
</tr>
<tr>
<td>L. ankaranae</td>
<td>Andavoaleo</td>
<td>13</td>
<td>3</td>
<td>16</td>
<td>18</td>
<td>D/T</td>
<td>A-A</td>
</tr>
<tr>
<td>L. ankaranae</td>
<td>Ankanana</td>
<td>16</td>
<td>12</td>
<td>44</td>
<td>27</td>
<td>D/T</td>
<td>ANP</td>
</tr>
<tr>
<td>Sub total L. ankaranae</td>
<td></td>
<td></td>
<td>43</td>
<td>121</td>
<td>35.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. spp</td>
<td>Andrainama</td>
<td>14</td>
<td>3</td>
<td>59</td>
<td>51</td>
<td>D/T</td>
<td>A-A</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>150</td>
<td>458</td>
<td>32.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

were rare overall (J. Saloma and T. Ralalohanarajaona pers. obs.); we rarely observed sportive lemurs during diurnal surveys, and of the five sportive lemur individuals that were observed in Antsahabe, three were sleeping or resting in dense vegetation, not in tree hollows.

Records of collections of *Strychnos madagascariensis* at an island-wide scale in Madagascar show that the species has been mostly collected in the western parts of the island, where forests are generally drier (Figure 1). However, a few collections of the species have been obtained from the eastern coastal areas, where forests are generally more humid.

DISCUSSION

Consistent with previous research suggesting that some sportive lemurs prefer tree hollow shelters over open sleeping sites in dense vegetation (Rasolohianjana et al. 2008), we found that northern sportive lemurs chose tree hollow shelters almost exclusively. However, since sportive lemurs resting in dense vegetation may be more difficult to detect than in tree hollows, it would be important to confirm that the observed percentages are not dramatically affected by this possible differential detection.

Strychnos madagascariensis is often used as a sleeping site. However, to state that it is preferentially chosen by sportive lemurs we would need data on both tree species and hollowed tree frequency in all of the visited forests. Given that we did not collect such data, our study remains preliminary. However our findings show that northern sportive lemurs were found in *S. madagascariensis* hollows with much higher frequency than in other tree species. This occurred for both *Leptilemur ankaranae* and *L. milanolii*, and occurred in the large majority of forests across northern Madagascar, especially in dry and transitional forest types.

Further study might help determine the hollow characteristics that are associated with *S. madagascariensis* use as a sleeping site. In particular, parameters such as the height of shelter, the width and depth of the hollow, as well as the density of the cover above the tree hollow has been shown to influence sleeping site choice in *Leptilemur sahalmazianus* (Seiler et al. 2013).

A DRY AND TRANSITIONAL FOREST TREE? The geographic focus of this study was on northern Madagascar, within the ranges of two species of northern sportive lemurs. However, given that *Strychnos madagascariensis* is distributed across the northern, western and southern (e.g., dry and suband) regions of the island suggests that this tree species is likely used by other *Leptilemur* species. From north to south it is reported and might particularly benefit hollow-dwelling fauna in the following localities: Analamana (this study), Andrafiamena (Buriviova 2011, this study), Ankaranaka National Park (Wilson et al. 1989, this study), the Loky-Manambato region (this study), Sahaamalaza peninsula (Schwitzer et al. 2007), Nosy Faly Peninsula (Simmen et al. 2007), Anja Valley (JS and LC unpub. data), Ankarafantsika (Rajjellion et al. 2002, Rakotratsima 2008), Antrema (Ramananikirana 2004), the northern banks of the Mahavavy river (Boeny region, JS and LC unpub. data), Kirindy (Ganzhorn 2002, Daumann et al. 2008), and Berenty, Antseranambahy, and Beza-Mahafaly (Simmen et al. 2006). Further, the geographic origins of herbaria specimens of *S. madagascariensis* confirm that it has a wide distribution. Its distribution covers mostly dry and transitional forests on the northern tip and mostly dry forests in the western parts of the island. This is consistent with the deciduous to semi-persistent characteristic of *S. madagascariensis*’s leaves (Schatz 2001), which suggest that it is adapted to dry or transitional forests. However the few specimens from more humid localities (e.g., on the Masaola peninsula, Figure 1, inset) suggest that its presence and role as a sleeping site for Malagasy fauna in humid forests also need further investigation.

A VALUABLE SLEEPING SITE FOR LEMURS? From the 150 *Strychnos madagascariensis* sleeping site observations, we noted that this tree shows a high propensity for hollow formation. It was not rare for trees to harbor several hollows of various sizes, hollows with several entries and sizes corresponding to most of, if not the entire trunk height. Altogether, *S. madagascariensis* could provide important shelter resources for tree-hollow-dwelling fauna in Madagascar. For instance, in what is to our knowledge the only two other studies to date systematically reporting tree species used by lemurs as resting or sleeping sites, *S. madagascariensis* was identified as the most preferentially chosen by *Leptilemur ruficaudatus* (D. Zinner pers. com.) in Kirindy and was among the tree species predominantly used by Cheirogaleus medius (Dauwmann 2013) as a resting/hibernating site in Kirindy in southwestern Madagascar. We hope that our study will generate interest among other researchers in improving understanding of other species that may also benefit from *S. madagascariensis* tree hollows.

Apart from protection against predators (Anderson 1998, Biebouw et al. 2009), tree hollow sleeping sites enable some species to tolerate climatic extremes (Dauwmann et al. 2004). Hibernation and daily torpor of lemurs of the Cheirogaleidae family and the low resting metabolic rates of sportive lemurs (*Leptilemuridae*), may have evolved as strategies to counter the challenges of pronounced seasonality with food and water shortage (Drack et al. 1999, Wright 1999, Dauwmann et al. 2004, Bianco et al. 2013, Kobbe and Dauwmann 2009). Selection of suitable tree hollows as
sleeping sites may provide thermoregulatory benefits for these lemur species by shielding them from rain, wind and strong fluctuations in temperature (Daussmann 2013); but see also Selier et al. (2013) who reported that Lepilemur sahamalazensis was not observed in hollows during the rainy season. In addition, Styrchnos madagascariensis leaves and fruits were reported to enter the diet of Leptilemur rusticaudatus in Kirindy (Ganzhorn 2002), and of L. edwardsii in Ankaranasticsa (Thalmann 2001). Its leaves are consumed by Microcebus r palevboles, Propithecus coronatus (Ramananirahana 2004), P. verreauxi (Simmen et al. 2003), P. tattersalii (Rasoioondraibe 2011) and Lemur catta (LaFleure and Gould 2009). Its fruits are commonly eaten by Eulemur sanfordi and E. coronatus (Wilson et al. 1989), and are part of the diet of E. macaco (Simmen et al. 2007), E. fulvus (Sato 2012, Sato et al. 2014), E. flavifrons (Voilampono et al. 2011). E. rufi- frons (Daussmann et al. 2008). L. catta (Simmen et al. 2003, 2006), M. ravelobensis, M. murinus (Thorn et al. 2011), P. verreauxi (Ra- isomaalala 1996 in Daussmann et al. 2008) and P. penirene (Banks 2013). The fruits are also a resource for rodents (Hypero- gymus antimena, Elixir spp., Macrotauronyx spp. and Rattus spp.), bushpigs (Potamochoerus larvatus), invertebrates (e.g., Aphaeno- gaster swammerdami ants (Daussmann et al. 2008) and birds (as shown for Southern African brown-headed parrot, Psitacillus cryptoxanthus (Taylor and Perrin 2006)). This suggests that the species may be an important food resource for a diversity of Malagasy animals.

More speculatively, a potential hidden benefit to some vertebrate species of these trees could come from the anti-parasitic properties of toxic compounds in Styrchnos madagascariensis leaves, bark and seeds, the Styrchnus genus produces styrchnine-related alkaloids (Philippe et al. 2004). In particular, S. madagascariensis leaves have strong toxic and repellent effects against ticks (Habbeeb 2010). Leaf decoctions and/or dry pounded bark of S. madagascariensis are traditionally used in eastern Africa against skin sores and ringworm infections caused by bacteria and fungi (De Wet et al. 2013). Additionally, the stem and leaves of several Strychynos species exhibit antiparasomal activity (Philipp et al. 2005). Further study is needed to determine the potential role of this tree species in fighting parasites in lemurs and other vertebrate species, but one could hypothesize that sleeping in a S. ma- dadagascariensis hollow or for (vertebrates able to detoxify its alkaloids) ingesting its leaves, stems, or seeds may present an anti-parasitic effect.

CONCLUSION

The extensive use of tree hollows by northern sportive lemurs suggests that they strongly depend on the availability of sleeping sites. The extensive historical habitat loss in Madagascar (Harper et al. 2007), coupled with the ongoing (0.4-2.5% per year) and predicted high rates of deforestation in Madagascar (up to +1.7% per year; Vienel et al. 2013) are challenging current lemur conservation (Schwitzer et al. 2014). Further, the often fragmented and isolated state of remaining habitat, and ominous threats from global warming throughout the island (Brown and Yoder 2015, Brown et al. 2015), call for further conservation attention to hol- low-dwelling species. In particular, inclusion of tree species that offer good quality sleeping sites such as S. madagascariensis in reforestation and forest management projects could prove beneficial for these lemur species.

ACKNOWLEDGEMENTS

We thank CAFÉ/CORE, the Direction Générale de l’Environnement et des Forêts, Madagascar National Parks, the Fanamby NGO (in- cluding S. Rajaboline and V. Rasoloarison) and in particular P. Rana- rison, the Direction Régionale de l’Environnement et des Forêts région D’ANA and SAVA, and the Madagascar institut pour la Conservation des Ecosystèmes Tropicaux. The field work was possible thanks to the continuous support of the Département de Biologie Animale et Ecologie, University of Mahajanga, the University of Antsirana, and particularly N. V. Andrhalihormina. We also thank the many great local guides and cooks for their help in the field and for sharing their incomparable expertise of the forest, and C. Kun-Rodrigues, M. Carrera, A. Beck, M. T. Ibuouro, H. Andrhalihormina, D. S. Ouseni for their participation to the field work as well as K. Daussmann, L. Wilmé, D. Zinner and S. Goodman for early constructive discussion on the project, and two anonymous reviewers that helped improving the manuscript. Financial support for this study was provided by the ‘Fundo para a Ciência e a Tecnologia’ (ref. SFRH/BD/64875/2009 to JS and PTDC/BA- BC/4476/2012 PTDC/BA-BEC/100176/2008 to LC), the GDRI Madag- askar, the Laboratoire d’Excellence (LABEX) entitled TULIP (ANR-10-LABX XI), the Rufford Small Grant Foundation, grant 10941-1, the Instituto Gulbenkian de Ciência, the LA BEEG (La- boratoire International Associeé - Bioinformatics, Ecology, Evolu- tion, Genomics and Behaviour) (CNRS), and the National Science Foundation (DBE-1257976). This study was conducted in agree- ment with the laws of the countries of Portugal, France, United States of America, and Madagascar.

REFERENCES

